已知椭圆M:
(a>b>0)的离心率为
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.
如图,梯形ABCD中,CD∥AB,AD=DC=CB=
AB=a,E是AB的中点,将ΔADE沿DE折起,使点A折到点P的位置,且二面角P-DE-C的大小为120°.
(1)求证:DE⊥PC;
(2)求直线PD与平面BCDE所成角正弦值;
(3)求点D到平面PBC的距离.
某校高三数学竞赛考试后,对90分以上的成绩进行统计,其频率分布直方图如图所示、。若130~140分数段的人数为2人。
(1)请估计一下这组数据的平均数M;
(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶小组。若选出的两人成绩差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率。
设向量
=(1,cos2θ),
=(2,1),
=(4sinθ,1),
=(
sinθ,1),其中θ∈(0,
).
(1)求
·
-
·
的取值范围;
(2)若函数f(x)=|x-1|,比较f(
·
)与f(
·
)的大小.
选修4—5:不等式选讲
设正有理数
是
的一个近似值,令
.
(Ⅰ)若
,求证:
;
(Ⅱ)比较
与
哪一个更接近于
?
选修4-4:坐标系与参数方程选讲.
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为
.
(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线
的参数方程为
(t为参数),直线
与圆C相交于A,B两点,已知定点
,求|MA|·|MB|。