(本小题满分12分)
哈尔滨冰雪大世界每年冬天都会吸引大批游客,现准备在景区内开设经营热饮等食品的店铺若干。根据以往对500名40岁以下(含40岁)人员和500名40岁以上人员的统计调查,有如下一系列数据:40岁以下(含40岁)人员购买热饮等食品的有260人,不购买热饮食品的有240人;40岁以上人员购买热饮等食品的有220人,不购买热饮等食品的有280人,请根据以上数据作出22列联表,并运用独立性检验思想,判断购买热饮等食品与年龄(按上述统计中的年龄分类方式)是否有关系?
注:要求达到99.9%的把握才能认定为有关系。
已知函数满足对任意实数
都有
成立,且当
时,
,
.
(1)求的值;
(2)判断在
上的单调性,并证明;
(3)若对于任意给定的正实数,总能找到一个正实数
,使得当
时,
,则称函数
在
处连续。试证明:
在
处连续.
已知函数,
.
(1)若且
,试讨论
的单调性;
(2)若对,总
使得
成立,求实数
的取值范围.
设抛物线的焦点为
,其准线与
轴的交点为
,过
点的直线
交抛物线于
两点.
(1)若直线的斜率为
,求证:
;
(2)设直线的斜率分别为
,求
的值.
在数列中,
(
).
(1)求的值;
(2)是否存在常数,使得数列
是一个等差数列?若存在,求
的值及
的通项公式;若不存在,请说明理由.
如图,是圆的直径,
垂直于圆所在的平面,
是圆上的点.
(1)求证:平面平面
;
(2)若,求二面角
的余弦值.