已知函数,其图像在点
处的切线为
.
(1)求、直线
及两坐标轴围成的图形绕
轴旋转一周所得几何体的体积;
(2)求、直线
及
轴围成图形的面积.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在
的产品为合格品,否则为不合格品.图
是甲流水线样本的频率分布直方图,表
是乙流水线样本频数分布表.
(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数
的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数
的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
甲流水线 |
乙流水线 |
合计 |
|
合格品 |
![]() |
![]() |
|
不合格品 |
![]() |
![]() |
|
合 计 |
![]() |
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
附:下面的临界值表供参考:
(参考公式:,其中
)
已知函数(I)求
的单调递增区间;
(II)在中,三内角
的对边分别为
,已知
,
成等差数列,且
,求
的值
.
已知数列满足:
,
,数列
满足
,
.
(Ⅰ)求数列的通项
;
(Ⅱ)求证:数列为等比数列;并求数列
的通项公式.
已知椭圆C过点A(1,),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修,旧墙足够长),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为xm,修建此矩形场地围墙的总费用为y(单位:元)。
(Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。