如图,设C为线段AB的中点,BCDE是以BC为一边的正方形,以B为圆心,BD为半径的圆与AB及其延长线相交于点H及K.
(Ⅰ)求证:HC·CK=BC2;
(Ⅱ)若圆的半径等于2,求AH·AK的值.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若,求
在区间
上的最大值;
(III)设函数,(
),试讨论函数
与
图象交点的个数
如图所示,在中,
,
,N在y轴上,且
,点E在x轴上移动.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过点作互相垂直的两条直线
,
与点M的轨迹交于点A、B,
与点M的轨迹交于点C、D,求
的最小值.
如图,在四棱锥中,
底面
,
,
,
,
是
的中点.
(Ⅰ)证明:;
(Ⅱ)证明:平面
;
(Ⅲ)求二面角的正切值
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(Ⅰ)分别求第3,4,5组的频率;
(Ⅱ)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.
(1)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(2)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,第4组中有名学生被考官D面试,求
的分布列和数学期望