(本小题满分10分)
假定某人每次射击命中目标的概率均为,现在连续射击3次。
(1) 求此人至少命中目标2次的概率;
(2) 若此人前3次射击都没有命中目标,再补射一次后结束射击;否则。射击结束。记此人射击结束时命中目标的次数为X,求X的数学期望。
已知二次函数.
(1)若,试判断函数
零点个数.
(2)若对且
,
,证明方程
必有一个实数根属于
.
(3)是否存在,使
同时满足以下条件①当
时,函数
有最小值0;②对任意实数x,都有
.若存在,求出
的值,若不存在,请说明理由.
已知圆:
,直线
过定点
.
(1)若直线与圆相切,切点为
,求线段
的长度;
(2)若与圆相交于
两点,线段
的中点为
,又
与
:
的交点为
,判断
•
是否为定值,若是,则求出定值;若不是,请说明理由.
如图,正方形的边长为1,正方形
所在平面与平面
互相垂直,
是
的中点.
(1)求证:平面
;
(2)求证:;
(3)求三棱锥的体积.
已知圆C经过点,且圆心
在直线
上.
(1)求圆的方程;
(2)过点的直线
截圆所得弦长为
,求直线
的方程.
设全集为,集合
,
.
(1)求如图阴影部分表示的集合;
(2)已知,若
,求实数
的取值范围.