若圆C过点M(0,1)且与直线相切,设圆心C的轨迹为曲线E,A、B(A在y轴的右侧)为曲线E上的两点,点
,且满足
(Ⅰ)求曲线E的方程;
(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;
(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点,若点
恰好在直线
上,求证:t与
均为定值.
(本小题满分10分)
已知曲线y=在x=x0处的切线L经过点P(2,
),求切线L的方程。
(本小题满分12分)
已知双曲线过点P,它的
渐近线方程为
(1)求双曲线的标准方程;
(2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.
(本小题12分)
抛物线上有两个定点A、B分别在对称轴的上、下两侧,F为抛物线的焦点,并且|FA|=2,|FB|=5,(1)求直线AB的方程。
(2)在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求这个最大面积.
(本题12分)
设命题p:,命题
。若
的必要不充分条件,求实数a的取值范围。
(本题12分)
已知中心在原点,一焦点为F(0,)的椭圆被直线
截得的弦的中点横坐标为
,求此椭圆的方程。