一台机器使用的时候较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速χ(转/秒) |
16 |
14 |
12 |
8 |
每小时生产有缺点的零件数y(件) |
11 |
9 |
8 |
5 |
(1)画出散点图,并通过散点图确定变量y对χ是否线性相关;
(2)如果y对χ有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:线性回归方程的系数公式:
如图是一个计算个数
的和的程序框图,请完成该图的程序框:
(I)请在图中判断框内(1)处和执行框中的(2)处填上合适的语句,使之能完成该题算法功能;
(II)根据程序框图写出程序.
下面有两个关于“袋子中装有红、白两种颜色的相同小球,从袋中无放回地取球”的游戏规则,这两个游戏规则公平吗?为什么?
游 戏 1 |
游 戏 2 |
2个红球和2个白球 |
3个红球和1个白球 |
取1个球,再取1个球 |
取1个球,再取1个球 |
取出的两个球同色→甲胜 |
取出的两个球同色→甲胜 |
取出的两个球不同色→乙胜 |
取出的两个球不同色→乙胜 |
从某小学随机抽取100名学生,将他们的身高(单位:厘米)按照区间 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150]进行分组,得到频率分布直方图(如图).
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?
选修4-5:不等式选讲
关于的不等式
.
(1)当时,解此不等式;
(2)设函数,当
为何值时,
恒成立?
选修4-4:坐标系与参数方程
已知直线的参数方程是
,圆C的极坐标方程为
.
(1)求圆心C的直角坐标;
(2)由直线上的点向圆C引切线,求切线长的最小值.