如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.
(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用 、 、 、 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:
(1)参加抽样调查的居民有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若居民区有8000人,请估计爱吃 粽的人数.
(4)若有外型完全相同的 、 、 、 粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是 粽的概率.
如图,已知 为 直径, 是 的中点, 交 的延长线于 , 的切线交 的延长线于 .
(1)求证:直线 与 相切;
(2)已知 且 , 的半径为5,求 的值.
如图,抛物线 经过点 , ,并与 轴交于点 ,点 是抛物线对称轴 上任意一点(点 , , 三点不在同一直线上).
(1)求该抛物线所表示的二次函数的表达式;
(2)在抛物线上找出两点 , ,使得△ 与 全等,并求出点 , 的坐标;
(3)在对称轴上是否存在点 ,使得 为直角,若存在,作出点 (用尺规作图,保留作图痕迹),并求出点 的坐标.
如图,已知在 中, ,以 为直径的 与 交于点 ,点 是 的中点,连接 , .
(1)若 ,求 ;
(2)求证: 是 的切线.
某商店以20元 千克的单价新进一批商品,经调查发现,在一段时间内,销售量 (千克)与销售单价 (元 千克)之间为一次函数关系,如图所示.
(1)求 与 的函数表达式;
(2)要使销售利润达到800元,销售单价应定为每千克多少元?