游客
题文

求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程。

科目 数学   题型 解答题   难度 容易
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知f(x)=
(1)求f(x)的单调区间;
(2)令g(x)=ax2﹣2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k的取值范围.

已知椭圆C:+=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为
(Ⅰ)设Q是椭圆上的动点,求|PQ|的最大值;
(Ⅱ)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当=λ,且满足≤λ≤时,求△AOB面积S的取值范围.

如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,点D在线段BB1上,且BD=,A1C∩AC1=E.

(Ⅰ)求证:直线DE与平面ABC不平行;
(Ⅱ)设平面ADC1与平面ABC所成的锐二面角为θ,若cosθ=,求AA1的长;
(Ⅲ)在(Ⅱ)的条件下,设平面ADC1∩平面ABC=l,求直线l与DE所成的角的余弦值.

已知数列{an}的前n项和为Sn,且a1=
(1)求{an}的通项公式;
(2)设bn=n(2﹣Sn),n∈N*,若bn≤λ,n∈N*恒成立,求实数λ的取值范围.
(3)设Cn=,Tn是数列{Cn}的前n项和,证明≤Tn<1.

设函数f(x)=cos(2x﹣)+2cos2x,
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=,b+c=2,a=1,求△ABC的面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号