游客
题文

某商场购进一批L型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。根据市场调研,若每件每降1元,则每天销售数量比原来多3件。现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差)

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,反比例函数 y = k x ( k 0 ) 的图象与正比例函数 y = 2 x 的图象相交于 A ( 1 , a ) B 两点,点 C 在第四象限, BC / / x 轴.

(1)求 k 的值;

(2)以 AB BC 为边作菱形 ABCD ,求 D 点坐标.

如图, AB = AE AB / / DE DAB = 70 ° E = 40 °

(1)求 DAE 的度数;

(2)若 B = 30 ° ,求证: AD = BC

如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房 AB 的楼顶,测量对面的乙栋楼房 CD 的高度.已知甲栋楼房 AB 与乙栋楼房 CD 的水平距离 AC = 18 3 米,小丽在甲栋楼房顶部 B 点,测得乙栋楼房顶部 D 点的仰角是 30 ° ,底部 C 点的俯角是 45 ° ,求乙栋楼房 CD 的高度(结果保留根号).

先化简,再求值: x 2 + 2 x + 1 x 2 - 1 - x x - 1 ,其中 x = 5

如图1,抛物线 y = - 1 4 x 2 + bx + c 经过点 C ( 6 , 0 ) ,顶点为 B ,对称轴 x = 2 x 轴相交于点 A D 为线段 BC 的中点.

(1)求抛物线的解析式;

(2) P 为线段 BC 上任意一点, M x 轴上一动点,连接 MP ,以点 M 为中心,将 ΔMPC 逆时针旋转 90 ° ,记点 P 的对应点为 E ,点 C 的对应点为 F .当直线 EF 与抛物线 y = - 1 4 x 2 + bx + c 只有一个交点时,求点 M 的坐标.

(3) ΔMPC 在(2)的旋转变换下,若 PC = 2 (如图 2 )

①求证: EA = ED

②当点 E 在(1)所求的抛物线上时,求线段 CM 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号