(满分15分)向量:
(1)求满足的实数m,n;
(2)若,求实数k;
已知函数在
与
时都取得极值.
(1)求的值及函数
的单调区间;
(2)若对,不等式
恒成立,求
的取值范围.
如图,直线与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:点的坐标为
;
(2)求证:;
(3)求的面积的最小值.
已知函数
(Ⅰ)求的单调减区间;
(Ⅱ)若在区间[-2,2].上的最大值为20,求它在该区间上的最小值.
某防疫站对屠宰场及肉食零售点的猪肉检查沙门氏菌带菌情况,结果如下表,试检查屠宰场与零售点猪肉带菌有无差异
带菌头数 |
不带菌头数 |
合计 |
|
屠宰场 |
8 |
32 |
40 |
零售店 |
14 |
18 |
32 |
合计 |
22 |
50 |
72 |
()
商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求
的值;
(2) 若商品的成品为3元/千克, 试确定销售价格
的值,使商场每日销售该商品所获得的利润最大