(本小题共14分)已知椭圆的左、右焦点分别为,, 点是椭圆的一个顶点,△是等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为,,且,证明:直线过定点().
已知函数。 (Ⅰ)求函数的单调区间与极值; (Ⅱ)若对于任意,恒成立,求实数的取值范围。
已知二次函数经过点 (1)求的解析式; (2)当时,求的最小值。
是R上的偶函数,,在,则。
(本小题满分12分) 已知函数(是自然对数的底数,). (1)当时,求的单调区间; (2)若在区间上是增函数,求实数的取值范围; (3)证明对一切恒成立.
(本小题满分12分) 已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切. (1)求椭圆的方程; (2)设直线与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号