已知函数
(
为自然对数的底数).
(Ⅰ)求曲线
在点
处的切线方程;
(Ⅱ)求函数
的单调区间;
(Ⅲ)若存在
使不等式
成立,求实数
的取值范围.
如图,已知
平面
,四边形
是矩形,
,
,点
,
分别是
,
的中点.
(Ⅰ)求三棱锥
的体积;
(Ⅱ)求证:
平面
;
(Ⅲ)若点
为线段
中点,求证:
∥平面
.
北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为
分,规定测试成绩在
之间为体质优秀;在
之间为体质良好;在
之间为体质合格;在
之间为体质不合格.
现从某校高三年级的
名学生中随机抽取
名学生体质健康测试成绩,其茎叶图如下:
(Ⅰ)试估计该校高三年级体质为优秀的学生人数;
(Ⅱ)根据以上
名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取
名学生,再从这
名学生中选出
人.
(ⅰ)求在选出的
名学生中至少有
名体质为优秀的概率;
(ⅱ)求选出的
名学生中体质为优秀的人数不少于体质为良好的人数的概率.
已知函数
.
(Ⅰ)求函数
的最小正周期;
(Ⅱ)求函数
在
上的最小值,并写出
取最小值时相应的
值.
设
,
.
(Ⅰ)证明:
;
(Ⅱ)求证:在数轴上,
介于
与
之间,且距
较远;
(Ⅲ)在数轴上,
之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.