(本小题满分12分)已知椭圆C:的短轴长为,且斜率为的直线过椭圆C的焦点及点。(Ⅰ)求椭圆C的方程;(Ⅱ)已知一直线过椭圆C的左焦点,交椭圆于点P、Q,(ⅰ)若满足(为坐标原点),求的面积;(ⅱ)若直线与两坐标轴都不垂直,点M在轴上,且使为的一条角平分线,则称点M为椭圆C的“左特征点”,求椭圆C的左特征点。
当为何实数时,复数Z= 是 (1)实数;(2)虚数;(3)纯虚数;(4)对应点在轴上方。
设≥>0,求证:≥
(1) 已知曲线C:(t为参数), C:(为参数)。化C,C的方程为普通方程,并说明它们分别表示什么曲线; (2)求两个圆ρ=4cosθ0, ρ=4sinθ的圆心之间的距离,并判定两圆的位置关系。
已知函数 (1)如,求的单调区间; (2)若在单调增加,在单调减少, 证明: o.
已知函数. (1)若函数的图象过原点,且在原点处的切线斜率是,求的值; (2)若函数在区间上不单调,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号