为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:
|
决赛成绩(单位:分) |
初一年级 |
80 86 88 80 88 99 80 74 91 89 |
初二年级 |
85 85 87 97 85 76 88 77 87 88 |
初三年级 |
82 80 78 78 81 96 97 88 89 86 |
(1)请你填写下表:
|
平均分 |
众数 |
中位数 |
初一年级 |
85.5 |
|
87 |
初二年级 |
85.5 |
85 |
|
初三年级 |
|
|
84 |
(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:
①从众数和平均数相结合看(分析哪个年级成绩好些);
②从平均数和中位数相结合看(分析哪个年级成绩好些)。
(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由。
若二次函数 图象的顶点在一次函数 的图象上,则称 为 的伴随函数,如: 是 的伴随函数.
(1)若 是 的伴随函数,求直线 与两坐标轴围成的三角形的面积;
(2)若函数 的伴随函数 与 轴两个交点间的距离为4,求 , 的值.
体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:
组别 |
个数段 |
频数 |
频率 |
1 |
|
5 |
0.1 |
2 |
|
21 |
0.42 |
3 |
|
|
|
4 |
|
|
(1)表中的数 , ;
(2)估算该九年级排球垫球测试结果小于10的人数;
(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.
如图①,等腰直角三角形 的直角顶点 为正方形 的中心,点 , 分别在 和 上,现将 绕点 逆时针旋转 角 ,连接 , (如图② .
(1)在图②中, ;(用含 的式子表示)
(2)在图②中猜想 与 的数量关系,并证明你的结论.
先化简 ,然后从 中选出一个合适的整数作为 的值代入求值.
已知: , ,求 的算术平方根.