如图,在四棱锥中,
底面
,四边形
为长方形,
,点
、
分别是线段
、
的中点.
(Ⅰ)证明:平面
;
(Ⅱ)在线段上是否存在一点
,使得
平面
,若存在,请指出点
的位置,并证明
平面
;若不存在,请说明理由.
数列{an}的前n项和记为Sn,
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又
成等比数列,求Tn
(1)求数列的通项公式
(2)求数列的前n项和
已知a=,c=2,B=150°,求边b的长及
设函数是定义在
上的减函数,并且满足
,
,
(1)求,
,
的值, (2)如果
,求x的取值范围。
(满分12分) 某商店按每件80元的价格,购进商品1000件(卖不出去的商品将成为废品);市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价元,获得总利润
元.
(1)请将表示为
的函数;
(2)当售价为多少时,总利润取最大值,并求出此时的利润.