游客
题文

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

(阅读)

数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.

(理解)

(1)如图1,两个直角边长分别为 a b 、斜边长为 c 的直角三角形和一个两条直角边都是 c 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;

(2)如图2, n n 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: n 2 =    

(运用)

(3) n 边形有 n 个顶点,在它的内部再画 m 个点,以 ( m + n ) 个点为顶点,把 n 边形剪成若干个三角形,设最多可以剪得 y 个这样的三角形.当 n = 3 m = 3 时,如图3,最多可以剪得7个这样的三角形,所以 y = 7

①当 n = 4 m = 2 时,如图4, y =    ;当 n = 5 m =    时, y = 9

②对于一般的情形,在 n 边形内画 m 个点,通过归纳猜想,可得 y =   (用含 m n 的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.

将图中的 A 型(正方形)、 B 型(菱形)、 C 型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.

(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是   

(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)

在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.

(1)本次调查的样本容量是   ,这组数据的众数为   元;

(2)求这组数据的平均数;

(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.

如图,把平行四边形纸片 ABCD 沿 BD 折叠,点 C 落在点 C ' 处, BC ' AD 相交于点 E

(1)连接 AC ' ,则 AC ' BD 的位置关系是   

(2) EB ED 相等吗?证明你的结论.

如图, AB O 的直径, CD O 相切于点 C ,与 AB 的延长线交于点 D CE AB 于点 E

(1)求证: BCE = BCD

(2)若 AD = 10 CE = 2 BE ,求 O 的半径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号