(本小题满分14分)
已知圆的方程为
,定直线
的方程为
.动圆
与圆
外切,且与直线
相切.
(Ⅰ)求动圆圆心的轨迹
的方程;
(II)斜率为的直线
与轨迹
相切于第一象限的点
,过点
作直线
的垂线恰好经过点
,并交轨迹
于异于点
的点
,记
为
(
为坐标原点)的面积,求
的值.
以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点
的极坐标为
,直线
过点
且与极轴成角为
,圆
的极坐标方程为
.
(1)写出直线参数方程,并把圆
的方程化为直角坐标方程;
(2)设直线与曲线圆
交于
、
两点,求
的值.
如图,是⊙
的直径,
是弦,
的平分线
交⊙
于点
,
,交
的延长线于点
,
交
于点
.
(1)求证:是⊙
的切线;
(2)若,求
的值
已知函数,(
为自然对数的底数)
(1)求函数的最小值;
(2)若对任意的
恒成立,求实数
的值;
(3)在(2)的条件下,证明:
已知数列是递增的等比数列,且
(1)求数列的通项公式;
(2)设为数列
的前n项和,
,求数列
的前n项和
。
甲、乙两地相距千米,汽车从甲地匀速行驶到乙地,速度不得超过
千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(千米/时)的平方成正比,比例系数为
,固定部分为
元,
(1)把全程运输成本(元)表示为速度
(千米/时)的函数,指出定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?全程运输成本最小是多少?