(本小题满分14分)
已知圆的方程为
,定直线
的方程为
.动圆
与圆
外切,且与直线
相切.
(Ⅰ)求动圆圆心的轨迹
的方程;
(II)斜率为的直线
与轨迹
相切于第一象限的点
,过点
作直线
的垂线恰好经过点
,并交轨迹
于异于点
的点
,记
为
(
为坐标原点)的面积,求
的值.
等差数列{am}的前m项和为Sm,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{am}的通项公式.
(2)若{am}又是等比数列,令bm=,求数列{bm}的前m项和Tm.
已知函数.
(1)若的极小值为1,求a的值.
(2)若对任意,都有
成立,求a的取值范围.
抛物线M:的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE,=45
,O是BC的中点,AO=
,且BC=6,AD=AE=2CD=2
,
(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.
某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段 |
[50,70) |
[70,90) |
[90,110) |
[110,130) |
[130,150) |
总计 |
频数 |
b |
|||||
频率 |
a |
0.25 |
(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.