(本小题满分14分)如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1. 将
沿EF折起到
的位置,使平面
与平面BCFE垂直,连结A1B、A1P(如图2).
(1)求证:PF//平面A1EB;
(2)求证:平面
平面A1EB;
(3)求四棱锥A1—BPFE的体积.
据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:
假设投资A项目的资金为
(
≥0)万元,投资B项目资金为
(
≥0)万元,调研结果是:未来一年内,位于一类风区的A项目获利
的可能性为
,亏损
的可能性为
;位于二类风区的B项目获利
的可能性为
,亏损
的可能性是
,不赔不赚的可能性是
.
(1)记投资A,B项目的利润分别为
和
,试写出随机变量
与
的分布列和期望
,
;
(2)某公司计划用不超过
万元的资金投资于A,B项目,且公司要求对A项目的投
资不得低于B项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利
润之和
的最大值.
已知
为锐角,且
,函数
,数列
的首项
,
.
(1)求函数
的表达式;(2)求数列
的前
项和
.
已知函数
与函数
在点
处有公共的切线,设
.
(1) 求
的值
(2)求
在区间
上的最小值.
已知椭圆
的焦点在
轴上,离心率为
,对称轴为坐标轴,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
、
两点,
为原点,在
、
上分别存在异于
点的点
、
,使得
在以
为直径的圆外,求直线斜率
的取值范围.
如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将
沿AF折起,得到如图所示的三棱锥
,其中
.

(1) 证明:
//平面
;
(2) 证明:
平面
;
(3)当
时,求三棱锥
的体积