如图,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分别是AC、AB
的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿
BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t
<4)s.解答下列问题:
(1)当t为何值时,PQ⊥AB?
(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为ycm2,求y与t之间的函数关系式;
(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之比为
=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.
阅读下面的材料:
例1:求函数 的反函数;
解:由 ,可得 ,所以原函数 的反函数是 .
例2求函数 的反函数.
解:由 ,可得 ,所以原函数 的反函数是 .
以上两例中,在相应的条件下,一个原函数有反函数时,原函数中自变量 的取值范围就是它的反函数中函数值 的取值范围,原函数中函数值 的取值范围就是它的反函数中自变量 的取值范围,通过以上内容完成下面任务.
(1)求函数 的反函数;
(2)函数 的反函数的函数值的取值范围为_____;
A. |
|
B. |
|
C. |
|
D. |
|
(3)下列函数中反函数是它本身的是_____(填序号即可).
① ;② ;③ ;④ ;⑤
某景区的旅游线路如图①,其中 为人口, 为风景点, 为三岔路的交汇点。图①中所给数据为相应两点间的路程(单位: ).甲游客以一定的速度沿线路“ ”步行游览,在每个景点,逗留的时间相同,当他回到 处时,共用去 .甲步行的路程 与游览时间 之间的部分函数图像如图②所示.
(1)求甲在每个景点逗留的时间,并补全图像;
(2)求 两点间的路程;
(3)乙游客与甲游客同时从 处出发,打算游完三个景点后回到 处,两人相约先到者在 处等候,等候时间不超过 .如果乙的步行速度为 ,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.
某单位计划派若干名员工参加电脑培训,现从两家电脑公司了解到,同样的培训条件,每名学员的培训费都报价为 元,甲公司的优惠条件是:一名学员按报价收费,其余学员每人优惠 ;乙公司的优惠条件是:每名学员优惠20%.
(1)分别写出甲、乙两公司总收费 (元)关于学员人数 (人)的函数解析式;
(2)讨论该单位在哪家公司的培训总费用较低.
已知函数 ,其中 表示 时对应的函数值,即 .
(1)求 ;
(2)计算: 的值;
(3)如果 ,试求 的值.
如图,在梯形 中, 是 的中点, ,点 是 边上一动点,设 的长为 .
(1)当 的值为_____时,以点 为顶点的四边形为直角梯形?
(2)当 的值为_____时,以点 为顶点的四边形为平行四边形?
(3)点 在 边上运动的过程中,以 为顶点的四边形能否构成菱形?试说明理由.