(选修4—2 矩阵与变换)
变换是将平面上每个点
的横坐标乘2,纵坐标乘4,变到点
。
(Ⅰ)求变换的矩阵;
(Ⅱ)圆在变换
的作用下变成了什么图形?
(本小题满分13分)如图,抛物线与椭圆
交于第一象限内一点
,
为抛物线
的焦点,
分别为椭圆
的上下焦点,已知
(1)求抛物线和椭圆
的方程;
(2)是否存在经过M的直线,与抛物线和椭圆分别交于非M的两点
,使得
?若存在请求出直线的斜率,若不存在,请说明理由。
(本小题满分12分)如图1,在边长为的正方形
中,
,且
,且
,
分别交
于点
,将该正方形沿
折叠,使得
与
重合,构成图
所示的三棱柱
,在图
中:
(1)求证:;
(2)在底边上有一点
,使得
平面
,求点
到平面
的距离.
(本小题满分12分)甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是,规定有一方累计2胜或者累计2和时,棋局结束。棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军。设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望。
(本小题满分12分)如图是函数图像的一部分。
(1)求出的值;
(2)当时,求不等式
的解集。
已知函数.
(1)当时,求
在点
处的切线方程;
(2)若对于任意的,恒有
成立,求
的取值范围.