游客
题文

如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?请写出必要的推理过程;
(2)△CED是不是直角三角形?请说明理由;
(3)若已知AD=6,AB=14,请求出请求出△CED的面积.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

(本题满分8分) (1)计算:   
(2)化简:

( 10分)如图,已知点,经过A、B的直线以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线上以每秒1个单位的速度沿直线向右下方向作匀速运动.设它们运动的时间为秒.

(1)用含的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥轴于D,问:为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时与直线CD的位置关系.

( 10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,yx成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).

⑴分别求该化工厂治污期间及治污改造工程完工后yx之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?

( 10分)如图,是⊙O的直径,延长线上的任意一点,为半圆的中点,切⊙O于点,连结于点

  求证:(1)
(2)

(8分)在东西方向的海岸线上有一长为1km的码头MN(如图),在码头西端M 的正西19.5 km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.

(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号