已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆C的方程;(2)设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;(3)在(2)的条件下,证明直线与轴相交于定点.
已知函数的图象在与轴交点处的切线方程是. (Ⅰ)求函数的解析式; (Ⅱ)设函数,若的极值存在,求实数的取值范围以及当取何值时函数分别取得极大和极小值.
已知. (Ⅰ) 若不等式在区间上恒成立,求实数的取值范围; (Ⅱ) 解关于的不等式.
对于函数 (1)探索函数的单调性; (2)是否存在实数,使函数为奇函数?
已知函数. (Ⅰ)若函数的值域为,求的值; (Ⅱ)若函数的函数值均为非负数,求的值域.
函数的定义域为集合A,函数的值域为集合B. (Ⅰ)求集合A,B; (Ⅱ)若集合A,B满足,求实数a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号