用秦九韶算法求多项式,当x=2时的值.
过曲线上的一点
作曲线的切线,交x轴于点P1,过P1作垂直于x轴的直线交曲线于Q1,过Q1作曲线的切线,交x轴于点P2;过P2作垂直于x轴的直线交曲线于Q2,过Q2作曲线的切线
,交x轴于点P3;……如此继续下去得到点列:
设
的横坐标为
(I)试用n表示;
(II)证明:
(III)证明:
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线L交椭圆C
于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理
由.
已知曲线在
点
处的切线斜率为
(Ⅰ)求的极值;
(Ⅱ)设在(一∞,1)上是增函数,求实数
的取值范围
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,
,AB=
PA=2,E.F分别为B C.PD的中点。
(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。