游客
题文

已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为B                      C.PD的中点。
(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

(本题满分15分)
已知曲线C上的动点满足到点的距离比到直线的距离小1.
求曲线C的方程;过点F的直线l与曲线C交于A、B两点.(ⅰ)过A、B两点分别作抛物线的切线,设其交点为M,证明;(ⅱ)是否在y轴上存在定点Q,使得无论AB怎样运动,都有?证明你的结论.

(本小题满分14分)已知是正数组成的数列,,且点()(nN*)在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,,求数列的通项公式.

(本题15分)如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,且.(1)求椭圆的标准方程;(2)记椭圆的上顶点为直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

(本题14分)如图,五面体.底面是正三角形,四边形是矩形二面角为直二面角.
(1)上运动,当在何处时,有∥平面,并且说明理由;
(2)当∥平面时,求二面角余弦值.

(本小题满分14分)设向量,向量.(1)若向量,求的值;(2)求的最大值及此时的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号