已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.
(本小题满分12分)
已知数列满足
(1)求;
(2)已知存在实数,使
为公差为
的等差数列,求
的值;
(3)记,数列
的前
项和为
,求证:
.
(本小题满分12分)
|
已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.
(本小题满分13分)如图,在矩形ABCD中,已知A(2,0)、C(-2,2),点P在BC边上移动,线段OP的垂直平分线交y轴于点E,点M满足
(Ⅰ)求点M的轨迹方程;
(Ⅱ)已知点F(0,),过点F的直线l交点M的轨迹于Q、R两点,且
求实数
的取值范围.
(本小题满分14分)已知等比数列的前
项和为
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足
,
为数列
的前
项和,试比较
与
的大小,并证明你的结论.
已知向量,
,
(1)若⊥
, 且-
<
<
. 求
;
(2)求函数|
+
|的单调增区间和函数图像的对称轴方程.