在直角坐标系中,以原点
为极点,以
轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
参数方程为
(
为参数),直线
的极坐标方程为
.
(1)写出曲线的普通方程和直线
的直角坐标方程;
(2)求曲线上的点到直线
的最大距离.
(本小题满分10分)
已知向量,定义函数
,求函数
的最小正周期、单调递增区间.
实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求:
(1)的值域;
(2)(a-1)2+(b-2)2的值域;
(3)a+b-3的值域.
(本小题满分12分)
如图,在三棱柱中,
侧面
,已知
(1)求证:;
(2)试在棱(不包含端点
上确定一点
的位置,使得
;
(3)在(Ⅱ)的条件下,若,求二面角
的平面角的正切值.
(本小题满分12分)一束光线从点出发,经直线l:
上一点
反射后,恰好穿过点
.(1)求
点的坐标;(2)求以
、
为焦点且过点
的椭圆
的方程;(3)设点
是椭圆
上除长轴两端点外的任意一点,试问在
轴上是否存在两定点
、
,使得直线
、
的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点
、
的坐标;若不存在,请说明理由.
(本小题满分12分)已知函数,
.
(1)求在区间
的最小值;(2)求证:若
,则不等式
≥
对于任意的
恒成立;(3)求证:若
,则不等式
≥
对于任意的
恒成立.