在某次模块水平测试中,某同学对于政治、历史、地理这三个学科每个学科是否能达到优秀水平的概率都为,记政治、历史、地理达到优秀水平的事件分别为
、
、
,未达到优秀水平的事件分别为
、
、
.
(Ⅰ)若将事件 “该同学这三科中恰有两科达到优秀水平” 记为,试求事件
发生的概率;
(Ⅱ)请依据题干信息,仿照(Ⅰ)的叙述,设计一个关于该同学测试成绩情况的事件,使得事件
发生的概率大于
,并说明理由.
已知函数,
.
(Ⅰ)解不等式;
(Ⅱ)若,试求
的最小值.
在平面直角坐标系中,直线
的参数方程为:
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线的平面直角坐标方程;
(Ⅱ)设直线与曲线
交于点
,若点
的坐标为
,求
的值.
如图,单位正方形区域在二阶矩阵
的作用下变成平行四边形
区域.
(Ⅰ)求矩阵;
(Ⅱ)求,并判断
是否存在逆矩阵?若存在,求出它的逆矩阵.
已知函数,
,且函数
在点
处的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当
时,直线
的斜率恒小于
,试求实数
的取值范围;
(Ⅲ)证明:.