某商场预计2013年1月份起前个月,顾客对某种商品的需求总量
(单位:件)与
的关系近似地满足:
.该商品第
月的进货单价
(单位:元)与x的近似关系是:
(1)写出今年第月的需求量
件与
的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2013年第几月份销售该商品的月利润最大,最大月利润为多少元?
(本题满分14分)在中,
分别是角
,
,
的对边,且
.
(I)若函数求
的单调增区间;
(II)若,求
面积的最大值.
( 本题满分14分)已知函数对任意实数均有
,其中常数k为负数,且
在区间
上有表达式
(1)求的值;
(2)写出在
上的表达式,并讨论函数
在
上的单调性.
(本题满分14分)设函数的定义域为
,记函数
的最大值为
.
(1)求的解析式;(2)已知
试求实数
的取值范围.
( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2
时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).
(本题满分14分)已知函数的一系列对应值如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)根据表格提供的数据求函数的解析式;
(2)根据(1)的结果,若函数周期为
,求
在区间
上的最大、最小值及对应的
的值.