( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2
时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).
(本小题满分14分)已知函数,
, 其中,
是自然对数的底数.函数
,
.
(Ⅰ)求的最小值;
(Ⅱ)将的全部零点按照从小到大的顺序排成数列
,求证:
(1),其中
;
(2).
(本小题满分13分)如图,已知抛物线,过焦点F任作一条直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).
(Ⅰ)证明:动点在定直线上;
(Ⅱ)点P为抛物线C上的动点,直线为抛物线C在P点处的切线,求点Q(0,4)到直线
距离的最小值.
(本小题满分13分)在四棱锥中,
,
,
平面
,直线PC与平面ABCD所成角为
,
.
(Ⅰ)求四棱锥的体积
;
(Ⅱ)若为
的中点,求证:平面
平面
.
(本小题满分13分)设是公比为q的等比数列.
(Ⅰ)推导的前n项和公式;
(Ⅱ)设q≠1, 证明数列不是等比数列.
(本小题满分12分)已知向量,向量
,函数
.
(Ⅰ)求的最小正周期
;
(Ⅱ)已知分别为
内角
的对边,
为锐角,
,且
恰是
在
上的最大值,求
和
.