如图,等边三角形OAB的边长为2,将线段OB绕着点O逆时针旋转60°得到线段OC,连结BC。
(1)试判定四边形OABC的形状;
(2)求点O到BC的距离;
(3)以O为圆心,r为半径作⊙O,根据⊙O与四边形OABC四条边交点的总个数,求相应r的取值范围。
三个队植树,第一个队植树x棵,第二个队比第一个队植的树2倍还多8棵,第三队植的树比第二队的一半少6棵,问三个队共植树多少棵?并求当x=100时,三个队共植树多少棵?
一小虫从某点O出发在一天直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为:(单位:厘米) +2,-6,-6,+12,-10,+11,-3
(1)小虫最后是否回到出发点O呢?
小虫离开出发点O最远是多少厘米?
在爬行过程中,如果每爬行1厘米奖励三支铅笔,那么小虫一共得到了多少支铅笔呢?
(本题8分)如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.
(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;
(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.
(本题10分)如图,在平面直角坐标系中,直线+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.
(1)求点A、B的坐标,并求边AB的长;
(2)求点D和点C的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.
(本题8分)为了发展旅游经济,我市某景区采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票金额为y1(元),节假日购票金额为y2(元).y1、y2与x之间的函数关系如图所示.
(1)观察图象可知:a=_______;b=_______;m=_______.
(2)直接写出y1、y2与x之间的函数关系式.
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A、B两个团队合计50人,A、B两个团队各有多少人?