游客
题文

(本题8分)为了发展旅游经济,我市某景区采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票金额为y1(元),节假日购票金额为y2(元).y1、y2与x之间的函数关系如图所示.

(1)观察图象可知:a=_______;b=_______;m=_______.
(2)直接写出y1、y2与x之间的函数关系式.
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A、B两个团队合计50人,A、B两个团队各有多少人?

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图①,一条笔直的公路上有A、B、C三地,B.C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.根据图像进行以下探究:

(1)请在图①中标出A地的位置,并作简要的文字说明;
(2)求图②中M点的坐标,并解释该点的实际意义;
(3)在图②中补全甲车的函数图像,求甲车到A地的距离y1与行驶时间x的函数表达式;
(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.

如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF于点H,交AC于点G,连接GE、GF.

(1)求证:△OAE≌△OBG;
(2)求证:四边形BFGE是菱形.

某翼型落地晾衣架如图1所示,图2是这种晾衣架的正面示意图.其中两翼AD、AH都平行于地面BC,离地面的高度为1.3米,支架AB与AC的长相等,且与地面的夹角∠ABC为67°,支点E、F、G分别为AD、AB、AC的中点,EF∥AC.求支架AB和单翼AD的长.(结果精确到0.1米)(参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36,sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)

如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.

(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.

把一副普通扑克牌中的4张:黑桃2、红心4、梅花4、黑桃5,洗匀后正面朝下放在桌面上.
(1)从中随机抽取一张牌是黑桃的概率是多少?
(2)从中随机抽取一张,再从剩下的牌中抽取另一张,请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求出抽取的两张牌牌面数字组成的数对是二元一次方程x+y=7的解的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号