学校食堂定期向精英米业以每吨1500元的价格购买大米,每次购买大米需支付运输费用100元,已知食堂每天需食用大米1吨,储存大米的费用为每吨每天2元,假设食堂每次均在用完大米的当天购买.
(1)问食堂每隔多少天购买一次大米,能使平均每天所支付的费用最少?
(2)若购买量大,精英米业推出价格优惠措施,一次购买量不少于20吨时可享受九五折优惠,问食堂能否接受此优惠措施?请说明理由.
已知函数.
(1)求函数的定义域和最小正周期;
(2)若,
,求
的值.
已知函数,
(其中
为常数).
(1)如果函数和
有相同的极值点,求
的值;
(2)设,问是否存在
,使得
,若存在,请求出实数
的取值范围;若不存在,请说明理由.
(3)记函数,若函数
有5个不同的零点,求实数
的取值范围.
(1)已知定点、
,动点N满足
(O为坐标原点),
,
,
,求点P的轨迹方程.
(2)如图,已知椭圆的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,
(ⅰ)设直线的斜率分别为
、
,求证:
为定值;
(ⅱ)当点运动时,以
为直径的圆是否经过定点?请证明你的结论.
已知数列中,
.
(1)求证:是等比数列,并求
的通项公式
;
(2)数列满足
,数列
的前n项和为
,若不等式
对一切
恒成立,求
的取值范围.
如图,已知四棱锥中,
平面
,底面
是直角梯形,
且.
(1)求证:平面
;
(2)求证:平面
;
(3)若是
的中点,求三棱锥
的体积.