中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且OM⊥ON.求椭圆的方程。
椭圆经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
。
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程。
若数列满足前n项之和
,
求:(1)bn;
(2) 的前n项和Tn。
已知数列的首项为
=3,通项
与前n项和
之间满足2
=
·
(n≥2)。
(1)求证:是等差数列,并求公差;
(2)求数列的通项公式。
个正数排成如下表所示的
行
列:
其中每一行成等差数列,每一列成等比数列,且各列的公比相等,若,
,
。
①求;
②记,求
关于
的表达式;
③对于②的,求证:
;
④若集合是集合
的真子集,则称由
的判断到
的判断为对
的估计的一次
优化。请你优化③中的结果。