游客
题文

(1)设的最大值.
(2) △ABC是锐角三角形,函数
证明:时,.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知抛物线 C : y 2 = 2 x 的焦点为 F ,平行于 x 轴的两条直线 l 1 l 2 分别交 C A B 两点,交 C 的准线于 P Q 两点.

(Ⅰ)若 F 在线段 AB 上, R PQ 的中点,证明 AR / / FQ

(Ⅱ)若 ΔPQF 的面积是 ΔABF 的面积的两倍,求 AB 中点的轨迹方程.

如图,四棱锥 P - ABCD 中, PA 底面 ABCD AD / / BC AB = AD = AC = 3 PA = BC = 4 M 为线段 AD 上一点, AM = 2 MD N PC 的中点.

(1)证明: MN / / 平面 PAB

(2)求直线 AN 与平面 PMN 所成角的正弦值.

如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

注:年份代码 1 - 7 分别对应年份 2008 - 2014

(Ⅰ)由折线图看出,可用线性回归模型拟合 y t 的关系,请用相关系数加以证明;

(Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0 . 01 ) ,预测2016年我国生活垃圾无害化处理量.

附注:

参考数据: i = 1 7 y i = 9 . 32 i = 1 7 t i y i = 40 . 17 i = 1 7 ( y i - y ̅ ) 2 = 0 . 55 7 2 . 646

参考公式:相关系数 r = i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) i = 1 n ( t i - t ̅ ) 2 i = 1 n ( y i - y ̅ ) 2

回归方程 y ̂ = a ̂ + b ̂ t 中斜率和截距的最小二乘估计公式分别为:

b ̂ = i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) i = 1 n ( t i - t ̅ ) 2 a ̂ = y ̅ - b ̂ t ̅

已知数列 { a n } 的前 n 项和 S n = 1 + λ a n ,其中 λ 0

(1)证明 { a n } 是等比数列,并求其通项公式;

(2)若 S 5 = 31 32 ,求 λ

已知函数 f ( x ) = | x + 1 | - | 2 x - 3 |

(Ⅰ)在图中画出 y = f ( x ) 的图象;

(Ⅱ)求不等式 | f ( x ) | > 1 的解集.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号