(本小题满分14分)
已知函数,(
e为自然对数的底数)
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在上无零点,求a的最小值;
(III)若对任意给定的,在
上总存在两个不同的
,使得
成立,求a的取值范围.
(本小题满分13分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足.
(Ⅰ)求B;
(Ⅱ)若,设
,
,求函数
的解析式和最大值.
(本小题满分10分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面BDE⊥平面PBC.
(本小题满分10分)设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
(本小题满分13分)如图,在多面体ABCDEF中,正方形与梯形
所在平面互相
垂直, 已知,
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求点C到平面BDF的距离.
(本小题满分13分)已知数列{an}的前n项和为Sn,又a1=1,a2=2,且满足Sn+1=kSn+1,
(1)求k的值及{an}的通项公式;
(2)若,求证:
.