某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有两条巷道通往作业区(如下图),
巷道有
三个易堵塞点,各点被堵塞的概率都是
;
巷道有
两个易堵塞点,被堵塞的概率分别为
.
(1)求巷道中,三个易堵塞点最多有一个被堵塞的概率;
(2)若巷道中堵塞点个数为
,求
的分布列及数学期望
,并按照"平均堵塞点少的巷道是较好的抢险路线"的标准,请你帮助救援队选择一条抢险路线,并说明理由.
已知函数,其中
.
(1)判断并证明函数的奇偶性;
(2)判断并证明函数的单调性.
已知集合.
(1)若中只有一个元素,求
的值,并把这个元素写出来;
(2)若中至多只有一个元素,求
的取值范围.
(1)计算:;
(2)设,求
的值.
设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.
设双曲线C:(a>0,b>0)的一个焦点坐标为(
,0),离心率
, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?