游客
题文

平行四边形ABCD中,AB=2,AD=,且,以BD为折线,把折起,使平面,连AC。
(1)求异面直线AD与BC所成角大小;
(2)求二面角B-AC-D平面角的大小;
(3)求四面体ABCD外接球的体积。

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用 表面展开图
登录免费查看答案和解析
相关试题

已知 F 1 , F 2 是椭圆 C : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的两个焦点,P为C上一点,O为坐标原点.

(1)若 PO F 2 为等边三角形,求C的离心率;

(2)如果存在点P,使得 P F 1 P F 2 ,且 F 1 P F 2 的面积等于16,求b的值和a的取值范围.

某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y的频数分布表.

y 的分组

[ - 0.20,0 )

[ 0,0.20 )

[ 0.20,0.40 )

[ 0.40,0.60 )

[ 0.60,0.80 )

企业数

2

24

53

14

7

(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;

(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)

附: 74 8 . 602 .

已知 { a n } 是各项均为正数的等比数列, a 1 = 2 , a 3 = 2 a 2 + 16 .

(1)求 { a n } 的通项公式;

(2)设,求数列 { b n } 的前n项和.

如图,长方体 ABCD- A 1 B 1 C 1 D 1的底面 ABCD是正方形,点 E在棱 AA 1上, BEEC 1.

(1)证明: BE⊥平面 EB 1 C 1

(2)若 AE= A 1 EAB=3,求四棱锥 E - B B 1 C 1 C 的体积.

x , y , z R ,且 x + y + z = 1 .

(1)求 ( x - 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 的最小值;

(2)若 ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - a ) 2 1 3 成立,证明: a - 3 a - 1 .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号