(选修4-4) 在平面直角坐标系中,圆
的参数方程为
(
为参数),直线
经过点
,倾斜角
.
(I)写出圆的标准方程和直线
的参数方程;
(Ⅱ)设直线与圆
相交于
两点,求
的值.
(本小题满分8分) 某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y
与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y
和y
分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?
如图,P—ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角
的余弦值;
(本小题满分10分)已知:等差数列,
,前
项和为
.各项均为正数的等比数列列
满足:
,
,且
.
(1)求数列与
的通项公式;
(Ⅱ)求
(本小题满分10分) 在中,角
的对边分别为
,且满足
(1)求角的大小;
(2)若为钝角三角形,求实数
的取值范围。
(本小题满分13分)
已知二次函数同时满足:①不等式
的解集有且只有一个元素;②在定义域内存在
,使得不等式
成立.
设数列的前
项和
,
(1)求数列的通项公式;
(2)数列中,令
,
,求
;
(3)设各项均不为零的数列中,所有满足
的正整数
的个数称为这个数列
的变号数。令
(
为正整数),求数列
的变号数.