已知⊙O:,
为抛物线
的焦点,
为⊙O外一点,由
作⊙O的切线与圆相切于
点,且
(1)求点P的轨迹C的方程
(2)设A为抛物线准线上任意一点,由A向曲线C作两条切线AB、AC,其中B、C为切点.求证:直线BC必过定点
(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.
确定,
,
,
的值,并补全频率分布直方图;
(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
(1)请将列联表补充完整;
网龄3年以上 |
网龄不足3年 |
合计 |
|
购物金额在2000元以上 |
35 |
||
购物金额在2000元以下 |
20 |
||
合计 |
100 |
(2)并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(参考公式:,其中
)
(本小题满分12分)的内角
,
,
的对边分别为
,
,
,
,
.
(1)求角;
(2)若,求
的面积.
选修4-5: 不等式选讲
设函数.
(Ⅰ)解不等式;
(Ⅱ)若,使得
,求实数
的取值范围.
选修4-4: 坐标系与参数方程
已知曲线的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(Ⅰ)求曲线的直角坐标方程和直线
的普通方程;
(Ⅱ)设点,若直线
与曲线
交于
两点,且
,求实数
的值.
选修4-1:几何证明选讲
如图,在中,
,以
为直径的圆
交
于点
,点
是
边的中点,连接
交圆
于点
.
(Ⅰ)求证:是圆
的切线;
(Ⅱ)求证:.