.已知函数,若存在
使得
恒成立,则称
是
的一个“下界函数” .
(I)如果函数(
为实数)为
的一个“下界函数”,求
的取值范围;
(II)设函数,试问函数
是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
已知函数
(1)当时,求
的解集
(2)若关于的不等式
的解集是
,求
的取值范围
设函数
(Ⅰ)求的单调区间和极值;
(Ⅱ)若关于的方程
有3个不同实根,求实数a的取值范围.
(Ⅲ)已知当恒成立,求实数k的取值范围.
如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的直角坐标系,求抛物线方程.
现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
已知不等式的解集为
.
(Ⅰ)求的值;
(Ⅱ)若“”是“
”的充分不必要条件,求实数
的取值范围
某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
![]() |
7 |
7 |
7.5 |
9 |
9.5 |
![]() |
6 |
![]() |
8.5 |
8.5 |
![]() |
由于表格被污损,数据看不清,统计员只记得
,且
两种元件的检测数据的平均值相等,方差也相等.
(Ⅰ)求表格中与
的值;
(Ⅱ)若从被检测的5件种元件中任取2件,求2件都为正品的概率.