如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=
CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是________________;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
操作题:
(1)已知:∠AOB,点M、N.
求作:①∠AOB的平分线OC;
②点P,在OC上,且PM=PN.(用尺规作图,保留作图痕迹,不写作法)
(2)如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)
如图,点D在BC上,DE垂直平分AC,垂足为E,F是BA的中点.
求证:DF是AB的垂直平分线.
结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是 ;表示-3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于.如果表示数a和-2的两点之间的距离是3,那么a= ;
(2)若数轴上表示数a的点位于-4与2之间,求+
的值;
(3)当a取何值时,+
+
的值最小,最小值是多少?请说明理由.
有一批水果,包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重如下(单位:千克):27,24,23,28,21,26,22,27,为了求得8筐样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.
(1)你认为选取的一个恰当的基准数为 ;
(2)根据你选取的基准数,用正、负数填写上表;
原质量 |
27 |
24 |
23 |
28 |
21 |
26 |
22 |
27 |
与基准数的差距 |
(3)这8筐水果的总质量是多少?
出租车司机小傅某天下午营运全是在东西走向的大道上行驶的.若如果规定向东为正,则行车里程(单位:km)如下:
+11,-2,+3,+10,-11,+5,-15,-8
(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?
(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?