已知函数,且
,函数
的图象经过点
,且
与
的图象关于直线
对称,将函数
的图象向左平移2个单位后得到函数
的图象.
(Ⅰ)求函数的解析式;
(Ⅱ)若在区间
上的值不小于8,求实数
的取值范围.
(III)若函数满足:对任意的
(其中
),有
,称函数
在
的图象是“下凸的”.判断此题中的函数
图象在
是否是“下凸的”?如果是,给出证明;如果不是,说明理由.
如图,内接于圆
,
平分
交圆
于点
,过点
作圆
的切线交直线
于点
.求证:
.
已知函数,
,直线
与曲线
切于点
且与曲线
切于点
.
(1)求a,b的值和直线的方程;
(2)证明:.
已知数列满足
,
.
(1)求证:数列是等差数列;
(2)设,数列
的前
项之和为
,求
的最小值.
已知直线,一个圆的圆心
在
轴正半轴上,且该圆与直线
和
轴均相切.
(1)求该圆的方程;
(2)直线与圆
交于
两点,且
是等边三角形,求
的值.
2010年上海世博会某国要建一座八边形(不一定为正八边形)的展馆区(如图),它的主体造型的平面图是由二个相同的矩形和
构成的面积为
m2的十字型地域,计划在正方形
上建一座“观景花坛”,造价为
元/m2,在四个矩形上(图中阴影部分)铺花岗岩地坪,造价为
元/m2,再在四个空角(如
等)上铺草坪,造价为
元/m2.设总造价为
元,
长为
m.
(1)试建立与
的函数关系
(2)当为何值时,
最小?并求这个最小值