已知直线,一个圆的圆心
在
轴正半轴上,且该圆与直线
和
轴均相切.
(1)求该圆的方程;
(2)直线与圆
交于
两点,且
是等边三角形,求
的值.
已知函数,
.
(1)求的最小正周期;(2)求
的的最大值和最小值;
(3)若,求
的值.
已知,
,求
的值.
在数列中,
、
,且
.
(Ⅰ) 求、
,猜想
的表达式,并加以证明;
(Ⅱ) 设,求证:对任意的自然数
,都有
.
设椭圆的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且
(Ⅰ)若过三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
如图,四边形ABCD中,为正三角形,
,
,AC与BD交于O点.将
沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为
,且P点在平面ABCD内的射影落在
内.
(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.