2010年上海世博会某国要建一座八边形(不一定为正八边形)的展馆区(如图),它的主体造型的平面图是由二个相同的矩形和
构成的面积为
m2的十字型地域,计划在正方形
上建一座“观景花坛”,造价为
元/m2,在四个矩形上(图中阴影部分)铺花岗岩地坪,造价为
元/m2,再在四个空角(如
等)上铺草坪,造价为
元/m2.设总造价为
元,
长为
m.
(1)试建立与
的函数关系
(2)当为何值时,
最小?并求这个最小值
已知椭圆的对称中心为原点
,焦点在
轴上,左右焦点分别为
和
,且
,点
在该椭圆上.
(1)求椭圆的方程;
(2)过的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切圆的方程.
己知斜三棱柱的底面是边长为
的正三角形,侧面
为菱形,
,平面
平面
,
是
的中点.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分12分)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(1)求的值;
(2)设表示比赛停止时已比赛的局数,求随机变量
的分布列和数学期望
.
(本题满12分)在中,角
的对边分别为
且
(1)求的值;
(2)若,且
,求
的值.
已知函数.
(Ⅰ)设a=1,b=-1,求f(x)的单调区间;
(Ⅱ)若对任意x>0,f(x)≥f(1).试比较lna与-2b的大小.