(本小题满分12分)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.
已知集合,
.
(Ⅰ)在区间上任取一个实数
,求“
”的概率;
(Ⅱ)设为有序实数对,其中
是从集合
中任取的一个整数,
是从集合
中任取的一个整数,求“
”的概率.
(本小题满分12分)公差不为零的等差数列中,
且
成等比数列。
(1)求数列的通项公式;
(2)设,求数列
的通项公式
(本小题满分10分)选修4-5:不等式选讲:
已知函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式
恒成立,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程:
以直角坐标系的原点为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
、
两点,当
变化时,求
的最小值.
(本小题满分10分)选修4-1:几何证明选讲:
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若,求
的长.