在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为
,并且原多边形上的任一点
,它的对应点
在线段
或其延长线上;接着将所得多边形以点
为旋转中心,逆时针旋转一个角度
,这种经过和旋转的图形变换叫做旋转相似变换,记为
,其中点
叫做旋转相似中心,
叫做相似比,
叫做旋转角.
(1)填空:
①如图1,将以点
为旋转相似中心,放大为原来的2倍,再逆时针旋转
,得到
,这个旋转相似变换记为
( , );
②如图2,是边长为
的等边三角形,将它作旋转相似变换
,得到
,则线段
的长为
;
(2)如图3,分别以锐角三角形的三边
,
,
为边向外作正方形
,
,
,点
,
,
分别是这三个正方形的对角线交点,试分别利用
与
,
与
之间的关系,运用旋转相似变换的知识说明线段
与
之间的关系.
在平面直角坐标系中,已知A、B是抛物线上两个不同的点,其中A在第二象限,B在第一象限,
(1)如图1所示,当直线AB与轴平行,
AOB=90
,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
如图2所示,在(1)所求得的抛物线上,当直线AB与轴不平行,
AOB仍为90
时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明,如果不是,请说明理由.
在(2)的条件下,若直线分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且
BPC=
OCP,求点P的坐标.
如图,AB是⊙O的直径,C、G是⊙O上两点,且,过点C的直线CD
BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若,求
E的度数.
(3)连接AD,在(2)的条件下,若CD=,求AD的长.
如图,为美化校园环境,某校计划在一块长为60米,宽为4米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)用含的式子表示花圃的面积.
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.
(3)已知某园林公司修建通道、花圃的造价(元)、
(元)与修建面积
之间的函数关系如图13-2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,
(1)求证:≌
.
(2)若DEB=90
,求证四边形DEBF是矩形.
今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
分组 |
分数段 |
频数 |
A |
36≤x<41 |
2 2 |
B |
41≤x<46 |
5 |
C |
46≤x<51 |
15 |
D |
51≤x<56 |
m |
E |
56≤x<61 |
10 |
(1)求全班学生人数和的值.
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.