设命题p:“函数f(x)=ax+1在(-1,1)上存在一个零点”,命题q:“函数f(x)=x2-2ax在(1,+∞)上单调递增”.若“p∨q”为真,“p∧q”为假,求实数a的取值范围.
设a,b,c都是正数,求证: (1)(a+b+c)≥9; (2)(a+b+c) ≥.
已知|a|<1,|b|<1,求证:<1.
知x、y、z均为实数, (1)若x+y+z=1,求证:++≤3; (2)若x+2y+3z=6,求x2+y2+z2的最小值.
已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:++…+≥n2.
若a,b∈R,求证:≤+.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号