已知函数=
,
.
(1)求在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则求的取值范围.
已知函数.
(1)求的最小正周期和最大值;
(2)讨论在
上的单调性.
一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求
的分布列与数学期望.
(注:若三个数满足
,则称
为这三个数的中位数).
选修4-5:不等式选讲
设a,b,c均为正数,且a+b+c=1,证明:
(Ⅰ)ab+bc+ac;
(Ⅱ).
选修4-4:坐标系与参数方程
在直角坐标系中,曲线
(
为参数,
),其中
,在以
为极点,
轴正半轴为极轴的极坐标系中,曲线
,曲线
.
(Ⅰ).求与
交点的直角坐标;
(Ⅱ).若与
相交于点
,
与
相交于点
,求
的最大值.
选修4-1:几何证明选讲
如图,P是O外一点,PA是切线,A为切点,割线PBC与
O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交
O于点E.
证明:(1)BE=EC;
(2)ADDE=2
.