对于函数,若存在实数
,使
成立,则称
为
的不动点.
⑴当时,求
的不动点;
⑵若对于任何实数,函数
恒有两相异的不动点,求实数
的取值范围;
⑶在⑵的条件下,若的图象上A、B两点的横坐标是函数
的不动点,且直线
是线段AB的垂直平分线,求实数b的取值范围.
新华中学高三年级(1)班有甲,乙两个数学学习小组,每组抽选名同学参加学校数学测试,成绩(满分
分)的茎叶图如图所示,其中甲组的平均成绩是
,乙组成绩的中位数是
.
(1)求茎叶图中,
的值;
(2)现要从测试成绩分及以上的学生随机抽取
名参加某次数学活动,若来自乙组的同学有
名,求关于
的分布列与期望.
已知函数为常数)
(1)若,求
的单调区间;
(2)当时,设
的最大值为
,最小值
,若
,求
的值.
已知函数
(Ⅰ)若试确定函数
的单调区间;
(Ⅱ)若,且对于任意
,
恒成立,求实数
的取值范围;
(Ⅲ)令若至少存在一个实数
,使
成立,求实数
的取值范围.
已知是等差数列,其前
项的和为
,
是等比数列,且
,
.
(1)求数列和
的通项公式;
(2)记,
,求数列
的前
项和.
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若
,则该零件为优等品;若
,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
甲零件频数 |
2 |
3 |
20 |
20 |
4 |
1 |
乙零件频数 |
3 |
5 |
17 |
13 |
8 |
4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |