对于函数,若存在实数
,使
成立,则称
为
的不动点.
⑴当时,求
的不动点;
⑵若对于任何实数,函数
恒有两相异的不动点,求实数
的取值范围;
⑶在⑵的条件下,若的图象上A、B两点的横坐标是函数
的不动点,且直线
是线段AB的垂直平分线,求实数b的取值范围.
已知f(x)=ln(1+x2)+ax(a≤0)。
(1)讨论f(x)的单调性。
(2)证明:(1+)(1+
)…(1+
)<e (n∈N*,n≥2,其中无理数e=2.71828…)
如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②)
(1)求证AP∥平面EFG;
(2)求二面角G-EF-D的大小;
(3)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明。
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1)
纪念币 |
A |
B |
C |
D |
概率 |
1/2 |
1/2 |
a |
a |
这四个纪念币同时投掷一次,设ξ表示出正面向上的个数。
(1)求概率p(ξ)
(2)求在概率p(ξ),p(ξ=2)为最大时,a的取值范围。
(3)求ξ的数学期望。
已知函数f(x)= +2sin2x
(1)求函数f(x)的最大值及此时x的值;
(2)求函数f(x)的单调递减区间。
若不等式1-loga<0有解,则实数a的范围是 .